Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 774
Filtrar
1.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065389

RESUMO

For the removal of arsenic from marine products, iowaite was prepared and investigated to determine the optimal adsorption process of arsenic. Different chemical forms of arsenic (As(III), As(V)) with varying concentrations (0.15, 1.5, 5, 10, 15, and 20 mg/L) under various conditions including pH (3, 5, 7, 9, 11) and contact time (1, 2, 5, 10, 15, 30, 60, 120, 180 min) were exposed to iowaite. Adsorption isotherms and metal ions kinetic modeling onto the adsorbent were determined based on Langmuir, Freundlich, first- and second-order kinetic models. The adsorption onto iowaite varied depending on the conditions. The adsorption rates of standard solution, As(III) and As(V) exceeded 95% under proper conditions, while high complexity was noted with marine samples. As(III) and As(V) from Mactra veneriformis extraction all decreased when exposed to iowaite. The inclusion morphology and interconversion of organic arsenic limit adsorption. Iowaite can be efficiently used for inorganic arsenic removal from wastewater and different marine food products, which maybe other adsorbent or further performance of iowaite needs to be investigated for organic arsenic.


Assuntos
Arsênio/isolamento & purificação , Compostos Inorgânicos/isolamento & purificação , Água do Mar/química , Poluentes Químicos da Água/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
2.
Molecules ; 26(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670050

RESUMO

Desulfurized gypsum (DG) as a soil modifier imparts it with bulk solid sulfite. The Fe(III)-sulfite process in the liquid phase has shown great potential for the rapid removal of As(III), but the performance and mechanism of this process using DG as a sulfite source in aqueous solution remains unclear. In this work, employing solid CaSO3 as a source of SO32-, we have studied the effects of different conditions (e.g., pH, Fe dosage, sulfite dosage) on As(III) oxidation in the Fe(III)-CaSO3 system. The results show that 72.1% of As(III) was removed from solution by centrifugal treatment for 60 min at near-neutral pH. Quenching experiments have indicated that oxidation efficiencies of As(III) are due at 67.5% to HO•, 17.5% to SO5•- and 15% to SO4•-. This finding may have promising implications in developing a new cost-effective technology for the treatment of arsenic-containing water using DG.


Assuntos
Arsênio/química , Cálcio/química , Ferro/química , Sulfitos/química , Poluentes Químicos da Água/química , Água/química , Arsênio/isolamento & purificação , Oxirredução , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
3.
Sci Rep ; 11(1): 2991, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542380

RESUMO

The correct immobilization and orientation of enzymes on nanosurfaces is a crucial step either for the realization of biosensors, as well as to guarantee the efficacy of the developed biomaterials. In this work we produced two versions of a chimeric protein, namely ArsC-Vmh2 and Vmh2-ArsC, which combined the self-assembling properties of Vmh2, a hydrophobin from Pleurotus ostreatus, with that of TtArsC, a thermophilic arsenate reductase from Thermus thermophilus; both chimeras were heterologously expressed in Escherichia coli and purified from inclusion bodies. They were characterized for their enzymatic capability to reduce As(V) into As(III), as well as for their immobilization properties on polystyrene and gold in comparison to the native TtArsC. The chimeric proteins immobilized on polystyrene can be reused up to three times and stored for 15 days with 50% of activity loss. Immobilization on gold electrodes showed that both chimeras follow a classic Langmuir isotherm model towards As(III) recognition, with an association constant (KAsIII) between As(III) and the immobilized enzyme, equal to 650 (± 100) L mol-1 for ArsC-Vmh2 and to 1200 (± 300) L mol-1 for Vmh2-ArsC. The results demonstrate that gold-immobilized ArsC-Vmh2 and Vmh2-ArsC can be exploited as electrochemical biosensors to detect As(III).


Assuntos
Arseniato Redutases/química , Arsênio/isolamento & purificação , Técnicas Biossensoriais , Proteínas Fúngicas/química , Proteínas Recombinantes de Fusão/química , Arsênio/toxicidade , Enzimas Imobilizadas/química , Escherichia coli/genética , Humanos , Pleurotus/química , Pleurotus/enzimologia , Thermus thermophilus/enzimologia
4.
Food Chem ; 349: 129115, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545600

RESUMO

Synthesis and application of a task-specific ionic liquids (TSILs) as extracting solvents or chelating agents in dispersive liquid-liquid micro-extraction (DLLME) was evaluated. The developed method was based on the use of an ammonium pyrrolidine dithiocarbamate (APDC) bonded ionic liquid for chelation with As(III), followed by conversion of the As(III) chelated TSIL to a hydrophobic ionic liquid using KPF6 as an anion-exchange reagent. As(V) was reduced to As(III), using a 2/1 w/w blend of KI and Na2S2O3 and then the total amount of As was measured through ETAAS analysis. Under optimal conditions, linear dynamic ranges of 0.2-15 ng mL-1 and 0.2-20 ng mL-1 were observed in the determination of As(III) and total As respectively. The relative standard deviations (RSD%, n = 5) for the determination of As(III) (10 ng mL-1) was 3.2% and the limits of detection and quantitation were determined to be 0.01 ng mL-1 and 0.0.034 ng mL-1; respectively.


Assuntos
Arsênio/análise , Arsênio/isolamento & purificação , Líquidos Iônicos/química , Microextração em Fase Líquida/métodos , Espectrofotometria Atômica/métodos , Limite de Detecção
5.
Int J Biol Macromol ; 172: 299-308, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418048

RESUMO

As one of the most significant natural polymer with the highest annual yield, lignin has been applied in the treatment of wastewater to remove heavy metal ions. However, there are still some shortages, such as low reactivity, difficulties in adsorbing oxyanions and low selectivity on specific oxyanions. To improve its adsorption properties, a novel lignin-based adsorbent was prepared in this study, doped with nitrogen by Mannich reaction, using triethylenetetramine (TETA) as N source, and further modified with Ca2+. The adsorption of Ca, N-co-doped lignin (Ca@N-Lig) for As (V), Cr (VI) and P (V) was studied. The Ca@N-Lig shows high capacity, excellent selectivity and prominent regeneration ability for As (V) adsorption. The adsorption of Ca@N-Lig for As (V) followed the Langmuir isotherm model and the pseudo-second-order kinetics model, yielding a maximum adsorption capacity of 681.59 mg·g-1 and a fast adsorption equilibrium within 30 min. Ca@N-Lig has an excellent regeneration ability on the adsorption of As (V) with a decrease of about 15.60% after 5 adsorption/desorption cycles. This study offers an efficient way to remove As (V) from polluted water.


Assuntos
Arsênio/isolamento & purificação , Cálcio/química , Lignina/química , Nitrogênio/química , Trientina/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Reutilização de Equipamento , Água Doce/química , Humanos , Cinética , Bases de Mannich/química , Águas Residuárias/química , Purificação da Água/métodos
6.
Chem Pharm Bull (Tokyo) ; 69(1): 86-91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390525

RESUMO

In this study, complex nickel-aluminum hydroxides were prepared at different molar ratios (NA12, NA11, NA21, NA31, and NA41), and their adsorption capability on arsenic ions (As(III)) from aqueous media was assessed. The physicochemical properties such as morphology, X-ray diffraction pattern, specific surface area, numbers of hydroxyl groups, and surface pH were investigated. In addition, the effect of contact time, temperature, and pH on the adsorption capability on As(III) was also evaluated. NA41 exerted the highest adsorption capability on As(III) comparable to other prepared adsorbents. However, the specific surface area and numbers of hydroxyl groups did not significantly affect the adsorption capability on As(III). The equilibrium adsorption of As(III) using NA41 was achieved within 24 h, and the obtained results corresponded to a pseudo-second-order model with correlation coefficient value of 0.980. Additionally, the adsorption isotherms were well described by both the Langmuir and Freundlich equations. The optimal pH condition for removal of As(III) using NA41 was found to be approximately 6-8. Finally, the adsorption mechanism of As(III) was assessed by analyzing the binding energy and elemental distribution, which indicated that the electrostatic interaction and ion exchange influenced the adsorption of As(III) under experimental conditions. These results demonstrated the potential candidate of NA41 as an effective adsorbent on As(III) removal from aqueous media.


Assuntos
Alumínio/química , Arsênio/isolamento & purificação , Hidróxidos/química , Níquel/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Arsênio/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície , Poluentes Químicos da Água/química
7.
Electrophoresis ; 42(4): 465-472, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33049065

RESUMO

Ti (IV)-modified vinyl phosphate magnetic nanoparticles (Fe3 O4 @SiO2 @KH570-PO4 -Ti (IV)) was prepared for simultaneous extraction of multiple arsenic species, followed by high performance liquid chromatography (HPLC)- inductively coupled plasma mass spectrometry (ICP-MS) analysis. Inorganic arsenic (iAs), dimethyl arsenic acid (DMA), monomethyl arsenic acid (MMA), p-amino phenyl arsenic acid (p-ASA), 4-hdroxyphenylarsenic acid (4-OH), phenyl arsenic acid (PAA), and 3-nitro-4-hydroxyphenylarsenic acid (ROX) were investigated as interest analytes. It was found that they were quantitatively adsorbed on Fe3 O4 @SiO2 @KH570-PO4 -Ti (IV) at pH 5, and desorbed completely with 0.1 mol/L sodium hydroxide solution. Enrichment factor of 100-fold was obtained by consuming 100 mL sample solution. Under the optimal conditions, the method combining MSPE with HPLC-ICP-MS presented a linear range of 1-5000 ng/L for seven arsenic species. The limits of detection were 0.39, 0.60, 0.23, 1.85, 0.54, 0.48, and 0.84 ng/L for DMA, MMA, p-ASA, iAs, 4-OH, PAA, ROX, with the relative standard deviations (c = 10 ng/L, n = 7) of 3.6, 3.9, 5.5, 12.4, 6.1, 5.8, 5.0, respectively. The accuracy of the method was validated by analyzing BCR 627 Tuna fish. The application potential of the method was further evaluated by chicken muscle and liver samples. No target arsenic species were detected in these samples, and good recoveries (80.6-123%) were obtained for the spiked samples at low, medium, and high concentration levels.


Assuntos
Arsênio , Arsenicais , Cromatografia Líquida de Alta Pressão/métodos , Nanopartículas de Magnetita/química , Espectrometria de Massas/métodos , Animais , Arsênio/análise , Arsênio/química , Arsênio/isolamento & purificação , Arsenicais/análise , Arsenicais/química , Arsenicais/isolamento & purificação , Galinhas , Limite de Detecção , Modelos Lineares , Fígado/química , Carne/análise , Músculos/química , Compostos Organofosforados/química , Reprodutibilidade dos Testes , Titânio/química , Atum , Compostos de Vinila/química
8.
Environ Geochem Health ; 43(1): 375-389, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32974885

RESUMO

In the lowlands of Nepal (Terai), the WHO drinking water guideline concentration of 10 µg/L for arsenic (As) is frequently exceeded. Since their introduction in 2006, iron-assisted bio-sand filters (Kanchan filters) are widely used to treat well water in Nepal. The filters are constructed on the basis of As-removal with corroding zero-valent iron (ZVI), with water flowing through a filter bed of iron nails placed above a sand filter. According to several studies, the performance of Kanchan filters varies greatly and depends on the size of the iron nails, filter design, water composition, and operating conditions, leading to concerns about their actual efficiency. This study examined 38 Kanchan household filters for which insufficient As-removal was reported, to evaluate the reasons for limited removal efficiency and to define measures for improved performance. The measured arsenic removal ranged from 6.3% to 98.5%. The most relevant factors were the concentrations of As and Fe in the raw water, with the best removal efficiency observed for water with low As (123 µg/L) and high Fe (5.0 mg/L). Although the concentrations of other elements, pH, flow rates, and contact time with ZVI also played a role, the combined evidence indicated that the reactivity of the frequently drying nail beds between filtrations was insufficient for efficient As-removal. Optimized filters with added top layers of sand and raised water outlets with flow restrictions to keep nails permanently immersed and to increase contact times, should be able to achieve higher and more consistent arsenic removal efficiencies.


Assuntos
Arsênio/isolamento & purificação , Filtração/métodos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Arsênio/análise , Arsênio/química , Características da Família , Filtração/instrumentação , Ferro/análise , Ferro/química , Nepal , Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/instrumentação
9.
Artigo em Inglês | MEDLINE | ID: mdl-33327414

RESUMO

A novel adsorbent Mn-Fe layered double hydroxides intercalated with ethylenediaminete-traacetic (EDTA@MF-LDHs) was synthesized by a low saturation coprecipitation method. The behavior and mechanism of As(III) removed by EDTA@MF-LDHs were investigated in detail in comparison with the carbonate intercalated Mn-Fe layered double hydroxides (CO3@MF-LDHs). The results showed that EDTA@MF-LDHs had a higher removal efficiency for As(III) than As(V) with a broader pH range than CO3@MF-LDH. The large adsorption capacity of EDTA@MF-LDHs is related to its large interlayer spacing and the high affinity of its surface hydroxyl groups. The maximum adsorption capacity for As(III) is 66.76 mg/g at pH 7. The FT-IR and XPS characterization indicated that the removal mechanism of the As(III) on EDTA@MF-LDHs include surface complexation, redox, and ion exchange.


Assuntos
Ânions , Arsênio , Técnicas de Química Analítica , Ácido Edético , Ferro , Magnésio , Ânions/síntese química , Arsênio/isolamento & purificação , Técnicas de Química Analítica/métodos , Ácido Edético/química , Concentração de Íons de Hidrogênio , Hidróxidos/química , Ferro/química , Magnésio/química , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Anal Chem ; 92(21): 14309-14313, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33138379

RESUMO

Fractionation information on arsenic (As) in complex samples, particularly solid samples, is of immense interest. Herein, selective extraction of various As species adsorbed onto ferrihydrite as the model substrate was online-adapted to inductively coupled plasma-mass spectrometry (ICP-MS) for sensitive detection. The As-adsorbed ferrihydrite sample was loaded into a homemade online sequential elution device using two commercially available micropipette tips, and then, each fraction of As including nonspecifically adsorbed, specifically adsorbed, iron oxide bonded, and residual species was successively extracted for ICP-MS detection, with H2O, NH4NO3, NH4H2PO4, ammonium oxalate, and HF as the eluents, respectively. While no water-soluble As was detected, the fraction of As bonded to iron oxide was detected as the dominant species (>80%), and the specifically adsorbed As and residual As also accounted for a substantial amount (10%). The method had a detection limit of 0.008 µg/kg for As(III) and 0.013 µg/kg for As(V), with merits such as extremely low sample consumption, high throughput, and minimized experimental manipulation, presenting an alternative strategy for sensitive fractionation analysis of As adsorbed onto solid substrates (e.g., iron oxides, etc.).


Assuntos
Arsênio/análise , Arsênio/isolamento & purificação , Fracionamento Químico/métodos , Compostos Férricos/química , Espectrometria de Massas , Adsorção , Arsênio/química , Limite de Detecção , Propriedades de Superfície
11.
Int J Biol Macromol ; 165(Pt A): 1286-1295, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33022348

RESUMO

Films made from neat chitosan and chitosan with magnetic nanoparticles (MNPs) were tested as adsorbents of arsenate ions. Sorption equilibrium and sorption kinetics studies are reported, including different models applied to enlighten experimental observations and predict results. The sorption of As (V) was reasonably explained using Freundlich isotherm for neat chitosan film although it was better represented by Langmuir equation for the composite sample. The experimental kinetics results showed that the adsorption of arsenate ions is very fast during the first minutes and then the composite seems to reach saturation, while a slow desorption in the chitosan film was observed and acceptably fitted with a pseudo first order reversible model. The adsorbent containing MNPs presented higher adsorption capacity, which was associated to the additional adsorbent capacity provided by the MNPs and its much more irregular surface area that leads to an enhanced adsorption surface. For instance, at 10 mg/L equilibrium concentration, which corresponds to an initial concentration of As (V) much higher than the normal concentration of arsenate in natural water, chitosan-MNP sample exhibits a removal capacity of 10.4 mg/g that is more than six times higher than the 1.6 mg/g shown by the chitosan film.


Assuntos
Arsênio/isolamento & purificação , Quitosana/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção/efeitos dos fármacos , Arsênio/toxicidade , Compostos Férricos/química , Cinética , Nanopartículas/química , Água/química , Poluentes Químicos da Água/toxicidade
12.
Environ Geochem Health ; 42(11): 4051-4064, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32696199

RESUMO

Natural groundwater from the towns of Wabana and Freshwater and treated well water from the town of Wabana in Newfoundland and Labrador, Canada were tested separately and together in sand columns to study the removal of arsenic. The most ideal conditions for arsenic removal appeared to include an arsenic concentration of approximately 35 µg/L and lower, an Fe:As mass ratio in the order of 65 and lower, and aeration of the sand media. Active aeration by pumping air though the filter, passive aeration by scraping off top layers of sand and virtual aeration by diluting the strength of the water being treated, were employed and compared. For tests where groundwater from the towns of Wabana and Freshwater was combined, arsenic removal was optimized and other elements, in addition to iron, were also correlated with effluent arsenic. Further, for these same tests there was a gradual increase in effluent pH that could have been due to oxygen depletion or gradually more reducing conditions in the sand column. Where Ni, Mn and Zn were correlated with effluent arsenic it was concluded that the increase in pH increased heavy metal removal and arsenic release. In the test where the treated Wabana water made up a greater proportion of the mix than the Wabana groundwater, lithium was also correlated with arsenic.


Assuntos
Arsênio/isolamento & purificação , Filtração/métodos , Água Subterrânea/química , Ferro/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Ar , Arsênio/análise , Filtração/instrumentação , Laboratórios , Terra Nova e Labrador , Oxigênio , Areia , Poluentes Químicos da Água/análise , Purificação da Água/instrumentação , Poços de Água
13.
Mater Sci Eng C Mater Biol Appl ; 111: 110755, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279796

RESUMO

Tooeleite is the only known ferric arsenite sulfate mineral and has environmental significance for arsenic remediation. This study investigated the formation and stability of biogenic tooeleite in Fe(II)-As(III)-SO42- environment using Acidithiobacillus ferrooxidans under the ambient conditions. The results show that bacteria facilitated the formation and crystallization of tooeleite owing to the microbial oxidation of Fe(II) to Fe(III). Due to the better growth of bacteria, the higher removal of As(III) by tooeleite formation was achieved under 8.978-10.806 g/L initial Fe(II) concentration and 2.00-3.00 initial pH, and the highest efficiency was ~95%. Fe(III) and As(III) precipitated simultaneously into two types of tooeleite. The relatively stable tooeleite is featured by the developed (020) crystal face and the bulk-like structure with thick flakes. This study yields a better understanding of biogenic tooeleite, and the importance of tooeleite formation in As(III)-rich environment for arsenic remediation.


Assuntos
Acidithiobacillus/metabolismo , Arsênio/metabolismo , Compostos Férricos/química , Ferro/metabolismo , Acidithiobacillus/química , Arsênio/química , Arsênio/isolamento & purificação , Cristalização , Concentração de Íons de Hidrogênio , Ferro/química , Oxirredução
14.
Chem Res Toxicol ; 33(4): 967-974, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32180400

RESUMO

Arsenic is one of the inorganic pollutants typically found in natural waters, and its toxic effects on the human body are currently of great concern. For this reason, the search for detoxifying agents that can be used in a so-called "chelation therapy" is of primary importance. However, to the aim of finding the thermodynamic behavior of efficient chelating agents, extensive speciation studies, capable of reproducing physiological conditions in terms of pH, temperature, and ionic strength, are in order. Here, we report on the acid-base properties of meso-2,3-dimercaptosuccinic acid (DMSA) at different temperatures (i.e., T = 288.15, 298.15, 310.15, and 318.15 K). In particular, its capability to interact with As(III) has been investigated by experimentally evaluating some crucial thermodynamic parameters (ΔH and TΔS), stability constants, and its speciation model. Additionally, in order to gather information on the microscopic coordination modalities of As(III) with the functional groups of DMSA and, at the same time, to better interpret the experimental results, a series of state-of-the-art ab initio molecular dynamics simulations have been performed. For the sake of completeness, the sequestering capabilities of DMSA-a simple dithiol ligand-toward As(III) are directly compared with those recently emerged from similar analyses reported on monothiol ligands.


Assuntos
Arsênio/isolamento & purificação , Líquidos Corporais/química , Quelantes/química , Succímero/química , Arsênio/química , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Simulação de Dinâmica Molecular , Estrutura Molecular , Termodinâmica
15.
Chemosphere ; 250: 126275, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32113091

RESUMO

Innovative iron/calcium in-situ-impregnated mesoporous activated carbons (GL100 and GL200) have been prepared by iron/calcium in-situ-impregnation and Multistage Depth-Activation. Arsenic adsorption kinetics, isotherms, thermodynamics, and re-usability were investigated. Effects of surface-absorbed (ST-HA) and dissolved states humic acid (DHA) on the arsenic adsorption were also determined. Results suggested in-situ iron/calcium impregnation caused the well-development of mesoporous structures during ranges of 2.0-5.0 nm in GL100 and 5.0-50 nm in GL200, respectively. The increase of iron/calcium ensured surface basicity and high ash contents on GL100/GL200, and As(III)/As(V) can be better adsorbed in neutral conditions with higher kinetics in comparison with regular mesoporous carbon XHIT. Maximum adsorption capacities of As(III)/As(V) by GL100 and GL200 were 2.985/3.385 mg/g and 2.516/2.807 mg/g, respectively. Arsenic desorption and carbon re-usability of GL100/200 was improved. As(III)(As (V)) adsorption capacities by GL100 and GL200 were 2.437(1.672) mg/g and 1.740(1.308) mg/g, respectively, after eight cycles. Arsenic adsorption capacities on GL100 were proved to be promoted with the presence of low-level of ST-HA or DHA, and be inhibited at a high-level. As(V) was bound more strongly than As(III) in the presence of ST-HA. As(III)/As(V) uptakes increased slightly and decrease gradually to 1.75/1.86 mg/g in the presence of DHA (0-10 mg DOC/L). Physisorption and chemisorption mechanisms dominant in arsenic adsorption on GL100 in presence of humic acid, forming inner-sphere complexation with metallic oxide, functional groups on carbon surface and humic acid structure, or ternary surface complexation via cationic metal ions as cation bridge.


Assuntos
Arsênio/isolamento & purificação , Carvão Vegetal/química , Temperatura Baixa , Purificação da Água/métodos , Adsorção , Arsênio/química , Cálcio/química , Substâncias Húmicas/análise , Ferro/química , Cinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação
16.
J Chromatogr A ; 1619: 460973, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32081487

RESUMO

Low levels of inorganic arsenic [As(III) and As(V)] in fishery products have been selectively isolated from fish extracts (1.0 g of wet fish samples pre-treated with 10 mL of 1:1 methanol/water under sonication at 25 °C for 30 min) by ionic imprinted polymer (IIPs) based solid phase extraction procedure (on-column mode). The selective adsorbent was synthesized using sodium (meta) arsenite as a template, 1-vinyl imidazole as a functional monomer, divinylbenzene as a cross-linker, and 2,2'-azobisisobutyronitrile as an initiator. Optimized pre-concentration conditions imply fish extract (10 mL) pH adjustment at 8.5 before loading (flow rate of 0.25 mL min-1), and elution with ultrapure water (2 mL) at 0.50 mL min-1. A pre-concentration factor of 50 was finally obtained after evaporation to dryness (N2 stream) and re-dissolution in 0.2 mL of ultrapure water before HPLC-ICP-MS. Synthesized material was found to pre-concentrate inorganic arsenic species; whereas organic arsenic compounds, mainly arsenobetaine (the major organoarsenic compound in fish/seafood products), were not found to interact with the adsorbent. The developed selective method gave limits of quantification of 1.05 and 1.31 µg kg-1 for As (III) and As (V), respectively, and good precision [relative standard deviations lower than 12% in fish extracts spiked at several As (III) and As (V) levels]. The proposed method was finally applied to the selective determination of As (III) and As (V) species in several fishery products.


Assuntos
Arsênio/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Produtos Pesqueiros/análise , Pesqueiros , Espectrometria de Massas , Polímeros/química , Extração em Fase Sólida/métodos , Animais , Arsenicais/química , Peixes , Íons , Limite de Detecção
17.
Int J Biol Macromol ; 149: 1222-1231, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035154

RESUMO

The manganese sludge from laboratory biological manganese removal filter column backwashing residue was used to modify the Chitosan Alginate Fe-sludge Beads. The Chitosan Alginate Fe-sludge Beads strengthened with manganese sludge (CAFBs) get the oxidation ability and can removal As(III) effectively without a pre-oxidation process. It was characterized by SEM (scanning electron microscopy), XRD (X-ray diffraction), and BET (Brunauer-Emmett-Teller analysis). Batch adsorption experiments were carried out to study the mechanism of As(III) removal. SEM-EDS shows that the surface is rough and rich in iron and manganese element (32.8%). The BET data shows that it is porous and has large surface area (99.20 m2·g-1). XRD proves that the main components of CAFBs are amorphous iron oxide and MnO2.Neutral and weak alkaline conditions (pH = 7-9) were favorable for the adsorption and H2PO4- had obvious inhibitory effect on As(III) removal. The experimental data shows that the Pseudo-second kinetic model, intra-granular diffusion model and Freundlich isotherm can better describe the adsorption process of As(III) by CAFBs. At 298 K, the maximum adsorption capacity of As(III) is 20.16 mg/g. Regeneration studies find that CAFBs can be effectively regenerated by aeration into the NaOH solution.


Assuntos
Alginatos/química , Arsênio/isolamento & purificação , Quitosana/química , Manganês/química , Esgotos/química , Adsorção , Concentração de Íons de Hidrogênio , Íons , Ferro/química , Cinética , Temperatura , Difração de Raios X
18.
Artigo em Inglês | MEDLINE | ID: mdl-32013027

RESUMO

Remediation of soil heavy metal by biochar has been extensively studied. However, few studies focused on the role of biochar on the co-immobilization of cadmium (Cd(II)) and arsenate (As(V)) and related soil nutrient availability. Remediation tests were conducted with three types of pristine and ferric trichloride (FeCl3) modified biochar (rice, wheat, and corn straw biochar) in Cd-As co-contaminated soil, with application rates of 1, 5, and 10% (w/w) and the incubation of 1, 7, 10, and 15 days. Using TCLP (Toxicity Characteristic Leaching Procedure) method, 10% of FeCl3 modified corn-straw derived biochar (FCB) had the highest immobilization efficiency of Cd(II) (63.21%) and As(V) (95.10%) after 10 days of the incubation. Iron-modified biochar immobilized higher fractions of water-soluble (F1) and surface-absorbed (F2) metal fractions than pristine biochar. For FCB amendment, Cd was mostly presented in the organic matter (OM) and sulfides associated (F4) and residual (F5) fractions (88.52%), as was found in the Fe-Al (oxides and hydroxides) (F3), F4, and F5 fractions (75.87%). FCB amendment increased soil pH values and available iron contents (p < 0.05), while no changes in soil available phosphorus content (p > 0.05). This study showed that FCB application reduces the environmental mobility of metals in Cd-As contaminated soil, while it also increases soil pH and available nutrient mobility, improving soil environmental quality and reducing remediation costs.


Assuntos
Arsênio/isolamento & purificação , Cádmio/isolamento & purificação , Carvão Vegetal , Ferro , Poluentes do Solo/isolamento & purificação , Solo
19.
J Chromatogr A ; 1619: 460915, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32008824

RESUMO

Considering the huge difference of biological toxicity, it is extremely significant to recognize the exact content of arsenic species in actual samples. In this paper, a novel pretreatment technique for the efficient extraction of arsenic species from herbal samples is developed by dual-frequency ultrasound-assisted enzymatic digestion (DUED). The preservation of arsenic original form, reduction of the actual analysis time, environmental friendliness and free-interference in subsequent detection make this method over the traditional method such as wet digestion, ashing and some solvent extraction technologies. The combination of DUED and atomic fluorescence spectrometry realize the speciation analysis of arsenic in traditional Chinese medicine. The optimizations of experimental parameters have been achieved, and the potential mechanism is discussed. The experimental data showed that cellulase is suitable for the digestion of herbal matrix than α-amylase and papain. Ultrasound can significantly increase the rate of enzymatic hydrolysis of biological molecules, especially under dual-frequency ultrasound irradiation. The highest relative extraction efficiency can be obtained by combining 40 kHz ultrasonic bath (UB) with 20 kHz ultrasonic probe (UP). Two certified reference materials [CRMs, GBW(E)090066 and GBW(E)090067] and four practical herbs were used to evaluate the accuracy and practicability of the method. Inorganic arsenic, including trivalent arsenic and pentavalent arsenic, was the main species in the four herbal samples.


Assuntos
Arsênio/isolamento & purificação , Medicamentos de Ervas Chinesas/química , Ondas Ultrassônicas , Arsênio/análise , Celulase , Hidrólise , Papaína , Espectrometria de Fluorescência , alfa-Amilases
20.
Environ Monit Assess ; 192(2): 110, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31938851

RESUMO

Arsenic removal by nanoscale zero-valent iron (NZVI) was modeled using the USGS geochemical program PHREEQC. The Dzombak and Morel adsorption model was used. The adsorption of As(V) onto NZVI was assumed to happen because of the hydrous ferric oxide (Hfo) which was the surface oxide for the model. The model predicted results were compared with the experimental data. While the experimental study reported that 99.57% arsenic removal by NZVI, the model predicted 99.82% removal which is about 0.25% variation. All the arsenic species have also been predicted to be significantly removed by adsorption onto NZVI surface. The effect of pH on As(V) removal efficiency was also evaluated using the model and it was found that above point-of-zero-charge (PZC), the adsorption of As(V) decreases with the increase of pH. The authors conclude that PHREEQC can be used to model contaminant adsorption by nanomaterials.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Arsênio/química , Arsênio/isolamento & purificação , Monitoramento Ambiental , Ferro , Modelos Teóricos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...